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Simple Summary: Models of species distribution allow us to learn how different environmental
factors determine where species are found. Our study focused on the Chilean dolphin in Seno
Skyring, Chilean Patagonia. We used three different methods to predict where these dolphins are
likely to be found, based on environmental data like water temperature, salinity, and proximity to the
coast, as well as human activities like fish farming. We found that dolphins are most commonly found
within six kilometers of the coast, in areas with many fish farms. This suggests that the dolphins may
be attracted to areas near fish farms. Understanding these patterns is crucial for developing strategies
to protect the endangered Chilean dolphin, especially given the large fish-farming industry in Chile.
Our research highlights the need for more knowledge and comprehensive conservation efforts to
ensure the dolphins’ long-term survival.

Abstract: Species distribution modeling helps understand how environmental factors influence
species distribution, creating profiles to predict presence in unexplored areas and assess ecological
impacts. This study examined the habitat use and population ecology of the Chilean dolphin in Seno
Skyring, Chilean Patagonia. We used three models—random forest (RF), generalized linear model
(GLM), and artificial neural network (ANN)—to predict dolphin distribution based on environmental
and biotic data like water temperature, salinity, and fish farm density. Our research has determined
that the RF model is the most precise tool for predicting the habitat preferences of Chilean dolphins.
The results indicate that these dolphins are primarily located within six kilometers of the coast,
strongly correlating with areas featuring numerous fish farms, sheltered waters close to the shore with
river inputs, and shallow productive zones. This suggests a potential association between dolphin
presence and fish-farming activities. These findings can guide targeted conservation measures,
such as regulating fish-farming practices and protecting vital coastal areas to improve the survival
prospects of the Chilean dolphin. Given the extensive fish-farming industry in Chile, this research
highlights the need for greater knowledge and comprehensive conservation efforts to ensure the
species’ long-term survival. By understanding and mitigating the impacts of fish farming and other
human activities, we can better protect the habitat and well-being of Chilean dolphins.

Keywords: Chilean dolphin; habitat modeling; random forest; Seno Skyring Sea; spatial distribution;
species distribution models
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1. Introduction

One of the world’s major producers of fish and fish products, Chile extracts around
1.5 million tons of seafood annually [1], placing the country at the top of the world’s
producers [2]. Chile is home to 51 of the world’s 138 marine mammal species, accounting
for 36% of the global diversity. [3]. As a result, threats to the conservation of marine
mammals are not only ecologically significant in the medium and long term but also pose a
potential short-term impact on the Chilean economy. Within the context of international
agreements on marine mammal protection to reduce fishing bycatch, there is a particular
concern for the conservation status of the Chilean dolphin, Cephalorhynchus eutropia, the only
endemic cetacean in Chile [4], which is included by Jefferson (2019) among the ten most
endangered cetacean species in the world and listed as “Near Threatened” in the Red List
IUCN [5] since at the time the total population was estimated to be below 10,000 individuals.
However, the absence of data on this important species does not allow for an adequate
assessment of the status of the population [4,5].

The Chilean dolphin, commonly known as the black dolphin, is a small, robust
cetacean native to the coastal waters of Chile, typically measuring around 1.7 m in length.
These dolphins are characterized by their blunt heads, small dorsal fins, and flippers, with
a distinctive coloration of dark gray on the dorsal side and white on the throat and belly,
accompanied by notable white patches behind the flippers (Figure 1) [6]. They inhabit cold,
shallow coastal waters, including bays, fjords, estuaries, and sometimes rivers, primarily
found from Valparaíso in the north to Cape Horn in the south. Their diet consists of fish
such as sardines, anchovies, and young salmon, as well as squid and various crustaceans.
The distribution of the Chilean dolphin extends from 33◦ S to the 55◦15◦ S latitude at the
southern tip of South America [7,8]. Large-scale genetic and morphometric studies have
identified distinct populations, including a northern population along the open coasts,
bays, and river mouths of Chile’s midland, Chiloé Island, and the northern Patagonian
fjords, as well as populations in the southern fjords and channels region [6,9]. The main
threats to the Chilean dolphin include mortality associated with their use as bait for crab
fishing [10] and, to a lesser degree, due to human consumption [8], bycatch in boats or
coastal gillnet fisheries [11,12], the destruction, contamination, and degradation of their
coastal habitat [13–15], and boat traffic [15].
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Chilean dolphins have been at the core of very few studies (Figure 2) about popula-
tion abundance, distribution, and ecology. These have focused mainly on the northern
population, from the mouth of the Maule River [6], the Valdivia River, and the sheltered
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bays along Queule [12], to the estuaries, fjords, and channels of localities at the southeast
of Chiloé Island [15–20], Chiloé north mainland (Ribeiro et al., 2007 [15]), and localities of
the north of Aysén and the archipelago of Guaitecas [14,21] and Puyuhuapi channels and
fjords [22]. These studies have shown that small resident populations in bays and estuaries
characterize the species. On the other hand, habitat-preference modeling studies for Chiloé
Island [5,15,19] and the Guaitecas Islands [21] indicate a more likely presence in shallow,
fresh, and turbid coastal waters. The concentration of studies in the northern population
of Chile only [6] highlights several knowledge gaps regarding the habitat of the southern
population of Chilean dolphins and its overall spatial distribution [21].
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Limited and outdated information on Chilean dolphins, derived from old studies
mainly conducted in the primary channels of the southern Patagonian archipelagos [23],
indicate a low frequency and abundance, with the species’ distribution restricted to a few
areas. This raises the question, still unanswered after more than two decades, of whether
these findings represent the normal distribution and density of the southern population
of Chilean dolphins, or if they are the result of a partial and incomplete sampling of this
vast region, or if they reflect the impact of mortality associated with their use as bait for
crabs [23].

In recent years, the Chilean government’s Undersecretary of Fisheries and Aquaculture
has been urgently addressing some critical actions toward the study and conservation of
the Chilean dolphin habitat, among them the extrapolation of the north Chilean dolphin
population habitat models built for Chiloé and northern Aysén [19,21] to the south of the
country, in response to concerns about the state of the dolphin population. While the
contribution of the latter study is valued, we recognize several limitations, such as the use
of scarce and not-updated information on Chilean dolphins obtained mainly in the primary
channels within the Patagonian archipelagos, with very little coverage of the eastern fjords
and western coasts [24].

The use of assumptions obtained from northern population habitat models does
not consider that the southern Patagonian archipelago offers particularities that are the
product of large-scale environmental dynamics. At that latitude, strong westerly winds
transport humid air from the Pacific Ocean toward the archipelagic system [25], which
translates into a significant latitudinal pluviometric gradient, with precipitation increasing
toward the southwest, reaching levels of ~7000 to 8000 mm per year, and decreasing again
from the Strait of Magellan toward the south, a longitudinal pluviometric gradient with
higher precipitation over the fjords and eastern channels, as the westerly winds ascend
as they meet the Andes Mountains, with consequent cooling and precipitation [26–28].
Winter snow precipitation over the Andes Mountains at this latitude supports large ice
fields, which provide fresh and cold water to the eastern fjords [29]. This also generates
a marked gradient in the marine environment, from the colder freshwater of the eastern
fjords to the more significant influence of westerly winds and Pacific Ocean waters in the
western archipelago.

The study of habitats is essential for understanding a species’ biological requirements
and ecological characteristics [30–32]. Resources (environmental, biotic, and abiotic) de-
termine the selection of the habitats of a species [33]. Using different species distribution
models allows us to assess our knowledge of the ecological factors that define a species’
spatial distribution [34–38]. In this context, advancing our knowledge of different marine
mammals underscores the importance of using predictive models. These models first
validate hypotheses about population variation and abundance. As our understanding
deepens, the resulting descriptive statistics provide the necessary data for these models
to accurately predict and map the spatial distribution patterns of species [39]. Ideally, this
modeling process should be an integral component of ecological research, incorporating as-
sumptions alongside observational, acoustic, and telemetric data to understand the spatial
relationship between a species and its habitat [40].

Given the complexity of the southern Patagonian fjords, this study aims to model the
preferred habitat of the Chilean dolphin within a research context where most conservation
and research efforts have been focused on northern Chile [5,19,21]. In this context, the
recent genetic distinction between Chilean dolphin populations highlights the urgency to
expand our understanding of the various ecological features where this endemic species
can be observed [9,41] to reduce the knowledge gaps regarding the habitat and overall
spatial distribution of the Chilean dolphin [21]. Spatial modeling of preferred habitats is
an evolving tool that provides decision makers and scientists with a visual representation
of biodiversity-rich areas, allowing us to capture and collect crucial information to under-
stand our ecosystems and the issues of cohabitation caused by the different uses of these
spaces [42].
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By leveraging systematically updated local data collected over eleven years (2010 to
2021) from the Seno Skyring area in southern Chilean Patagonia, this research seeks to en-
hance our understanding of the spatial distribution of the Chilean dolphin, Cephalorhynchus
eutropia, within this specific inland sea, which is part of the Patagonian fjords. Our hypothe-
sis suggests that the distribution of the Chilean dolphin in this region can be comprehended
and predicted using a set of ten explanatory variables, including seven environmental
factors, two physical factors, and one anthropogenic factor related to human presence. In
order to test this hypothesis thoroughly, we employ three of the most prevalent species
distribution models (SDMs): random forest (RF), generalized linear model (GLM), and
artificial neural network (ANN). Each model is used to generate a predictive raster map
of the Chilean dolphin distribution, offering a spatial representation of potential habitats.
Identifying the key explanatory variables influencing the distribution of this small, endemic,
and endangered cetacean enhances our ecological understanding, crucial for targeted con-
servation strategies. The use of advanced modeling techniques like RF, GLM, and ANN
improves the robustness and reliability of predictions, setting a methodological standard
for future marine biology and conservation studies, and providing actionable data for
effective protection measures. This is particularly vital given the increasing anthropogenic
pressures and environmental changes. The subsequent sections will explore the detailed
methodologies used, present the predictive maps generated by the SDMs, and discuss the
implications of these findings for the conservation and management of the Chilean dolphin.

2. Materials and Methods
2.1. Study Area Description

The study area for this research is located in South America, specifically in the southern
region of the Chilean southeastern Patagonia fjords. As shown in Figure 3, this area focuses
on Seno Skyring, an inland sea, north of Riesco Island in the Magallanes region. North of
the Strait of Magellan, two bodies of water form inland seas: Seno Otway and Seno Skyring.
The Seno Skyring area covers approximately 1500 km2 with a maximum depth of 400 m.
The complex geology of Seno Skyring restricts water exchange with the Patagonian fjords
and the ocean, resulting in a semi-enclosed estuarine system. This system has minimal
connectivity with the ocean and fjords through two very narrow and shallow channels: the
Fitzroy Canal to the southeast and the Gajardo Canal to the west.

The marine ecosystem of the fjords connecting the Strait of Magellan is characterized
by extreme oceanographic conditions [43]. The region’s unique abiotic and biotic character-
istics were partly shaped during the Holocene, specifically by glacial melt. The bathymetric
profile, the high precipitation, the marine deposits, and the water supply from the glaciers
make Seno Skyring a unique ecosystem. Indeed, the bathymetry and the rivers’ mouth
widths make Skyring a practically closed marine system [26]. The high annual precipitation
exceeding 5000 mm and the low evaporation rate generate an important freshwater supply
with low salinity [29]. Unlike most of Patagonia, where tides largely influence dynamics,
Seno Skyring functions differently. In this region, the primary drivers of circulation are the
high-energy wind patterns of the Magallanes region to which Seno Skyring, unlike most
of the eastern Patagonia fjords, is particularly exposed, as it is located to the west of the
highest mountains with icefields and is surrounded (to the north and east) by low hills of
the mainland coast and Riesco Island to the south [44].
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Figure 3. Study area location map: (A) Chilean Patagonia and (B) Seno Skyring, Chile.

2.2. Methodological Framework
2.2.1. Data

This study uses three different SDMs to predict the likely distribution of the Chilean
dolphin in the Skyring area (see Supplementary Materials—Figure S1). The input datasets
comprise ten explanatory datasets with a spatial resolution of 100 m × 100 m, and a
spatiotemporal layer of Chilean dolphin presence data collected in the field (Figure 4).
Presence data were collected using a medium-sized nautical boat as part of several annual
marine fauna surveys [22,24] in nine field campaigns between 2010 and 2021; data were
tested for spatial autocorrelation in order to account for it in the SDMs used. A total of
350 points of species presence were collected, and 400 points of pseudo-absence entries
were generated and included in the model (70% of the data is used for training, while 30%
is used to test the model’s classification accuracy); hence, the presence/absence ratio in
the final dataset is 7:8. The CHONOS’ oceanographic information system [45] provided
explanatory data variables, such as temperature and salinity, derived from a hydrodynamic
model detailed in Pinilla et al. (2022) [44]. Specifically, averages from 2016 and 2017 were
utilized, due to the lack of more recent datasets. A digital elevation model (DEM) was
created using the natural neighbor interpolation method [46] based on nautical charts from
the Chilean Navy (SHOA). The selected variables include bathymetry, seafloor temperature,
dissolved oxygen, salinity, silica, kelp, fish farms, river mouths, distance to shoreline,
and the normalized difference turbidity index (NDTI). Bathymetry maps the underwater
topography, crucial for understanding habitat structures, while seafloor temperature in-
fluences metabolic rates and prey availability. Dissolved oxygen levels are essential for
marine life, affecting ecosystem diversity and abundance. Salinity impacts water density,
buoyancy, and osmoregulation, crucial for the dolphin’s habitat preferences. Silica levels
influence primary productivity, which supports higher trophic levels, including dolphins.
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Kelp forests provide essential habitats and food resources, indicating rich biodiversity
and productive ecosystems. Proximity to fish farms helps assess anthropogenic impacts
and potential human–wildlife conflicts. River mouths, with their high nutrient loads and
productivity, attract prey species. Distance to shoreline affects habitat types and human
activities, influencing dolphin distribution. Lastly, the NDTI measures turbidity, affecting
light penetration and primary productivity, essential for foraging dolphins. These variables
collectively capture the environmental and anthropogenic factors influencing the Chilean
dolphin’s habitat, leading to accurate predictive models.
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The explanatory environmental variables were interpolated using Kriging to provide
a continuous layer, and the vector data (i.e., the presence of kelp and the density of fish
farms) were transformed from vector to raster format, using the density and point and
kernel methods [47]. Moreover, the distance to the river mouths and the shoreline was
computed using the Distance and Near tools in ArcGIS Pro [48]. The turbidity of water was
calculated using a Landsat 8 satellite image (courtesy of the U.S. Geological Survey) from
October 2020, with a 1% cloud cover. The image was preprocessed by applying atmospheric
and radiometric correction to convert the digital numbers to light reflectance values. The
geometric correction was also performed to reproject the image to the SIRGAS-Chile 2016
UTM zone 19S. To calculate the turbidity index, we followed the methodology applied
in other studies [49–51]. We calculated the normalized difference turbidity index (NDTI)
of the study area using green and red bands. Once all the data were in raster format,
resampling was performed to overlay all the layers at the same resolution and extent. A
spatial resolution of 100 m by 100 m was chosen to consider the diversity of information
sources and the limited availability of datasets for the region. Additionally, the presence-
and absence-point layers were produced by overlaying all the Chilean dolphin sightings
recorded between 2010 and 2021 in the Seno Skyring area with a random-point layer; this
was generated using the random-point layer creation tool available in ArcGIS Pro 2.9.0 [52].
The creation of random absence points in non-inventoried areas allows the model to predict
the distribution of the Chilean dolphin throughout the entire study area [53].

2.2.2. Methods for Species Distribution Modeling

This study employed three different species distribution modeling (SDM) approaches:
one using traditional statistical methods (GLM) and two utilizing modern machine learning
techniques (RF and ANN). Each approach was used independently, and their outputs
resulted from individual runs of each algorithm, without combining them into an ensemble.

Random Forest (RF)

RF is a machine learning model that extends classification and regression trees
(CARTs) [54,55]. RF combines learning methods with a decision tree scheme to create
several randomly drawn decision trees to predict categorization or regression outputs. The
algorithm works as follows: (1) bootstrap the training data to obtain different subsets; (2) a
no-pruned CART is drawn from each bootstrap subset where only one variable (predictor)
is selected randomly for the split at each node; and (3) associate the results of all the CARTs
with obtaining the predicted results [56]. The number of predictors evaluated at each
split was calculated to tune the model. A total of six predictors were fixed. Additionally,
the variables’ importance was explored through the GINI index, which measures how
important a variable is for estimating the value of the target variable, i.e., Chilean dolphin
presence, across all the trees that make up the RF.

Generalized Linear Model (GLM)

GLMs are mathematical extensions of linear models that allow non-linearity and
non-constant variance structures in the data [57,58]. GLM models are one of the most
straightforward parametric approaches to studying species distributions and their rela-
tionships with biotic and abiotic covariates [59,60]. In GLMs, the predictor variables are
combined to obtain a linear predictor which is associated with the expected value of the
target variable through a link function [57]:

g(E(Y)) = LP = α+ XTβ, (1)

where E(Y) denotes the expected value of the response variable, α is a constant called the
intercept, X = (X1, . . ., Xp) is a vector of the predictor variables, and β = {β1, . . ., βp} is the
vector of regression coefficients (one for each predictor). The distribution of Y in a GLM
can be any familiar exponential distribution, i.e., the binomial, and the link function can be
any monotonic differentiable function, i.e., logarithm or logit [57].
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Artificial Neural Network (ANN)

First proposed in 1943 by McCulloch and Pitts [61], an ANN is a complex model
system that involves a network of simple processing elements (artificial neurons) that can
display complex global behavior (e.g., habitat site selection based on various environmental
variables), governed by the connections between the neurons and associated functions [62].
The ANN used in the study was the nnet of the nnet R package [63], a feed-forward ANN
in which vertices can be numbered so that all connections go from a vertex to one with a
higher number. The vertices are arranged in layers, connecting only to higher layers [64].
The ANN looks for weights that express the relationship between the layers. Most of
the calculations happen in the hidden layers. First, each neuron takes an input from the
input layer, multiplies it, and adds it to the initial random weights. Then, the ANN uses
some defined transfer and activation functions to make a final prediction in an output
layer. The ANN was parameterized using five hidden units in a single layer (selected by
cross-validation), with a weight decay equal to 0.01, and repeated 100 times.

2.2.3. Model Evaluation Metrics
Area under the Curve (AUC) of a Receiver Operating Characteristic (ROC)

The AUC is the area under a ROC, ranging from 0 to 1, where 1 indicates perfect
classification, 0.5 indicates no discrimination, and 0 is not perfect classification. The ROC
curve is a graph that displays sensitivity on the y-axis and (1—specificity) on the x-axis,
plotted across several classification thresholds., sensitivity as the proportion of correctly
predicted observations of species presence and specificity as the proportion of correctly
predicted observations of species absence [65]. Higher AUC values depict a better goodness-
of-fit model.

Root Mean Square Error (RMSE)

Another metric calculated to assess the predictive performance of the models was the
RMSE between the model predictions and observations:

RMSE =
∑N

i (Pi − Oi)
2

N
(2)

where Pi and Oi are the prediction and observation of the distribution in the sampling site i.

True Skill Statistic (TSS)

A metric for evaluating SDM performance, TSS provides an unbiased measure of
model accuracy, independent of species prevalence [66]. TSS is very valuable in ecological
and conservation research, as it facilitates informed decisions on species management
and protection; by incorporating both sensitivity (the model’s ability to accurately predict
a species’ presence) and specificity (the model’s ability to accurately predict a species’
absence), TSS ensures a thorough and precise assessment of the SDMs’ predictive capa-
bilities [67]. This dual consideration allows for the assessment of the models’ overall
effectiveness in predicting species distribution patterns, thereby improving the reliability
of their findings and strategies.

We use the aforementioned SDMs (RF, GML, and ANN) to predict the spatial distribu-
tion of the Chilean dolphin across the Seno Skyring at a 100 m × 100 m spatial resolution.
The models predict the probability of the presence of Chilean dolphins with values ranging
from 0 to 1. So, to define the presence/absence value, we calculated a threshold to convert
the probability maps into a binary map (0/1), taking as a base the true positive rate and true
negative rate statistics calculated in the AUC. Additionally, to not overestimate the quality
of the models, we opted for a robust approach in which we trained the models on a subset
of the data and evaluated them on the remaining observations. To train a model, we used
70% of the data and 30% to test the model’s ability to classify the observations correctly. To
reduce over-fitting issues, we applied a 5-fold cross-validation method. The entire dataset
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was divided into five groups, where one was chosen for model testing, and the remaining
four were used to train the model. This was repeated in an iterative process until all groups
were used to test the model. RStudio software version 2022.07.0 [68] was used to calculate
the spatial distribution of the Chilean dolphin. The randomForest [69], caret [70], and stats
(R Core Team and contributors worldwide, 2023) packages were used to calculate and
perform the model predictions. All the code and datasets used in this study can be openly
accessed thru GitHub (https://github.com/ledgeumontreal/chilean_dolphin; accessed on
20 May 2024).

3. Results
3.1. Model Validation

After the application of the 5-fold cross-validation method, the AUC-ROC and RMSE
values (Table 1) for the training and validation dataset were calculated.

Table 1. AUC-ROC values for the training and test dataset applying the three models.

Models
AUC

Training Validation RMSE TSS

RF 1 0.97 0.22 0.91
GLM 0.82 0.81 1.70 0.52
ANN 0.94 0.88 0.37 0.68

The above-presented metrics show an overall good performance for all the models.
These performance indicators were used to evaluate the SDMs’ performance because they
reflect the degree to which the observed presence/absence points overlap the distribu-
tion susceptibility.

Since the AUC is a measurement of the discriminatory capacity of the classification
models, this measure for the GLM depicts that the model has low power, compared with
the other models, to predict the Chilean dolphin distribution. In contrast, the ANN and RF
models performed well, but the random forest model outperformed the ANN following
the accuracy metrics used. The TSS, on the other hand, provides a balanced measure of
model performance that is independent of species prevalence. Among the three models
evaluated for predicting the distribution of the Chilean dolphin in the Seno Skyring, the RF
model stands out with the highest TSS value, indicating excellent predictive performance
and suitability for identifying critical habitats. The ANN model also demonstrates good
performance, while the GLM shows moderate predictive capability. Overall, the RF model
is the most reliable, the ANN model serves as a good supplementary tool, and the GLM
should be used cautiously with additional validation. A supplementary chart (Figure S2)
has been provided to show the ROC curves; in it, sensitivity refers to the proportion of
the presences that were correctly classified, and specificity refers to the absences that were
correctly classified.

3.2. Chilean Dolphin Spatial Distribution Map

Finding the likely spatial distribution of the Chilean dolphin was the primary objective
of this study. Figure 5 shows the probability and presence/absence map of the Chilean
dolphin’s spatial distribution in the Seno Skyring from the three models applied. The
study area distribution patterns predicted by the models were similar, given that the higher
probabilities of dolphins’ presence are located along the coastlines, with high turbidity
water values, near fish farms. However, the RF model was the one that provided better
results, according to the validation results.
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Figure 5. Probability (left) and presence/absence (right) maps of the Chilean dolphin distribution in
the Seno Skyring Sea.

From the explanatory variables used with the RF model, it was found that kelp
contributes less variance to the distribution of dolphins in the Seno Skyring Sea. In contrast,
the distance to the shoreline is the most important variable in the distribution of Chilean
dolphins within the RF model. The previous assumption is based on the Gini scores of
the RF, i.e., Importance in Table 2, which refers to the contribution each variable had in
splitting each node when a tree was built. Hence, it measures the average gain of purity by
the splits of each variable in the model. The results show that the distance to the shoreline
variable is over 80 times more important than the kelp variable. Furthermore, the density
of fish farms is over 36 times more important than the distribution of kelp.

Table 2. Importance of variables in the RF model.

Variable Importance

Distance to shoreline 111.4
Fish farm density 50

Salinity 48
Bathymetry 35

Turbidity 31
River mouths 28

Dissolved oxygen 26
Seafloor temperature 21

Silica 20
Kelp 1.4

Based on the importance of variables in the RF model, a graph was created to illustrate
the relationship between the distance to the shoreline and the density of fish farms with the
distribution of Chilean dolphins. Figure 6 depicts the dependency of these variables. The
point at which the red lines intersect indicates, in the case of the distance to the coastline,
the furthest point where there is a higher probability of Chilean dolphin presence. The
density of fish farms also shows the location from which there is a higher probability of
their presence.
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Figure 6. Charts displaying the partial dependence of the most influential predictors. In each chart,
the solid red line represents the average partial dependence across all instances, while the dashed line
illustrates the Individual Conditional Expectation (ICE) for specific instances. This shows how the
predicted outcome varies with changes in the feature for individual instances, helping to visualize
the heterogeneity in the model’s predictions.

4. Discussion

This study presents a robust model incorporating ten explanatory variables and several
years of data on the Chilean dolphin’s preferred habitat. It identifies ecological factors
influencing the spatial distribution of these dolphins in Seno Skyring, an eastern Patagonian
fjord located two thousand kilometers south of other studied sites [19,21,71,72]. Our
findings demonstrate the effectiveness of SDMs in predicting Chilean dolphin distribution.
Although model performance varies, even the lowest-performing model, GLM, achieved
an AUC of 0.81. However, the RF model outperformed the others, with a cross-validated
AUC exceeding 0.97 and a TSS of 0.91, indicating that the model accurately identifies areas
where the species is likely to be found and where it is not. These results align with previous
research comparing SDMs for cetaceans [60,73,74].

Dolphin fauna in the eastern Patagonian fjords, particularly Skyring, has been under-
studied. Earlier research in the larger central channels of the southern Patagonian fjords
and the Strait of Magellan reported rare sightings of Chilean dolphins. However, the most
extensive, detailed, and continuous (2013–2022) monitoring of marine mammals, which
is used in this research, shows contrasting results with those of Gibbons et al. (2002) and
Goodall et al. (1997), placing the Chilean dolphin as the main cetacean species, with the
highest relative abundances and interannual presence, in three fjords [75–82].

Our results confirm a higher probability of Chilean dolphin occurrence in coastal and
shallow waters, consistent with previous models from northern Chiloé Island [5,19] and
the Guaitecas Islands [21] in the northern Patagonian fjords of Chile [19–21,41,83], and also
matches the findings of the few other studies conducted off the open mainland coast of
central Chile [9]. However, unlike other studies, our results do not confirm the significance
of proximity to river mouths for dolphin distribution [6,15,19,21]. Seno Skyring’s water
uniformity, influenced by limited oceanic inflow, high wind energy, and low river flow, sets
it apart from other areas in Patagonia.

The RF model implemented here uniquely shows a strong positive relationship be-
tween Chilean dolphin occurrence and proximity to salmon farms, a correlation not ob-
served in prior studies [15,19]. However, with the current data, it is unclear whether this
relationship indicates a direct attraction or coincidental habitat preference. More informa-
tion on dolphin behavior is needed to establish a causal explanation. These findings are
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important as Seno Skyring’s distinct climatic and oceanographic conditions differ signifi-
cantly from most of the Patagonian canal and fjord system [27]. This progress is vital for
creating a matrix prediction map to compare sightings between northern and southern
Chilean dolphin populations [6].

In regard to our methodological approach, this research aligns with [36], who empha-
sized the need of standardized methodologies in cetacean habitat studies, and [39], who
highlighted the superior performance of ensemble models, resonating with our RF model’s
results. Ref. [40] discussed integrating data across species and scales, and our long-term
data collection enhances the understanding of habitat preferences. Ref. [43] examined the
influence of marine fronts and physical processes on marine life, aligning with our findings
on Seno Skyring’s water homogeneity. Ref. [26] described Seno Skyring’s paleoecological
evolution, providing context for our environmental observations. Ref. [41] focused on ge-
netic analysis and population structure, complementing our ecological approach, while [42]
used habitat modeling for conservation, similar to our study’s implications for managing
fish farm and vessel traffic risks.

While our study provides valuable insights, it also acknowledges limitations. Forecast-
ing the environmental conditions shaping a species’ spatial distribution involves challenges,
particularly in the spatial scope of modeling this unique species’ habitat. Extending our
findings to similar regions, especially in southern Chile, is beneficial. The complexity of
marine ecosystems requires numerous studies and modeling efforts to train the algorithm
effectively. Additionally, data granularity is a constraint. Raster data manipulation to fill
spatial gaps reduces accuracy. Converting all data to raster format and resampling to a
uniform resolution and extent (100 m by 100 m) was necessary due to varied information
sources and limited datasets for the region.

For management purposes, it is crucial to evaluate the risks and impacts, both direct
and indirect, of the overlap between fish farms and Chilean dolphin distribution in Seno
Skyring. Potential risks include collisions from frequent boat activity, behavioral changes
and stress due to disturbances and noise pollution, and possible health effects [84,85]. The
preference for coastal areas may reduce vessel collision risks. However, the Fitzroy Channel,
the only navigation route into Seno Skyring, presents significant risks due to the presence
of Chilean dolphins and Commerson’s dolphins [75,86]. Furthermore, Figure 7 shows
the current boundaries of both, the National Park Kawésqar and the National Reserve
Kawésqar, and the outputs of the RF species distribution model of the Chilean dolphin;
it is important to highlight that there is still a big portion of the study area that has no
status of protection, which in the near future could represent a great threat to a decreasing
population of an endemic species.
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5. Conclusions

This research aims to forecast the potential spatial distribution of the Chilean dolphin
in Seno Skyring, a fjord located in southern Chilean Patagonia. Utilizing three species
distribution models (SDMs)—random forest (RF), generalized linear model (GLM), and
artificial neural network (ANN)—we evaluated the ecological factors influencing dolphin
distribution. The RF model demonstrated the highest accuracy, with an area under the
curve (AUC) exceeding 0.95 and a true skill statistic (TSS) of 0.91. The results indicate that
proximity to the shoreline and the density of fish farms are critical factors in determining
the distribution of Chilean dolphins in the area.

Our study highlights the key ecological factors that influence the spatial distribution
of Chilean dolphins in Seno Skyring, an eastern Patagonian fjord significantly distant
from other studied sites. Using ten explanatory variables and multiple years of data, we
employed SDMs to predict dolphin distribution, and the RF model achieved the highest
performance. These results not only corroborate previous cetacean SDM studies but also
align with standardized methodologies in cetacean habitat studies, the superior perfor-
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mance of ensemble models, the integration of multiscale data, and the influence of marine
fronts and physical processes on marine life.

Our findings provide critical insights for conservation efforts, particularly in man-
aging risks from fish farms and vessel traffic. The study holds significant implications
for the conservation of the Chilean dolphin by enhancing our understanding of their pre-
ferred habitats and spatial distribution patterns. The findings provide valuable insights
for decision makers and scientists for formulating effective conservation strategies and
policies to safeguard the species. Given that Chile is a major global producer of fish and
fish products, it is crucial to account for the potential impacts of anthropogenic distur-
bances, such as maritime traffic, tourism, fishing practices, and aquaculture, on marine
mammal populations. This study underscores the urgency of expanding our knowledge
of the ecological characteristics of the southern Chilean dolphin population to develop
comprehensive conservation measures.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/biology13070514/s1, Figure S1: Workflow diagram of the method-
ological framework of this study, Figure S2: ROC curves along the AUC values for each model (AUC
values in Table 1).
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